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ABSTRACT

Subsonic and transonic steady and unsteady flowfields over airfoils are inves-
tigated with the numerical solution of the governing equations. This study aims to
enhance the performance of rotary wing and fixed wing aircraft by better understand-
ing and by taking advantage of unsteady phenomena such as dynamic lift. In the past
few years many advances have been made in algorithm development for the numerical
solution of the Euler and the Navier Stokes equations. In this study, these new zonal
techniques are applied. A zonal approach is more computationally efficient in solving
the governing equations than previous approaches, and has certain advantages over
the standard single moving grid approach. The zonal grid consists of two grids, one
being the inner grid which is fixed to the airfoil, and the other being the outer grid
which extends to the far field or to a specified outer boundary. The inner grid is
allowed to rotate with the body, while the outer grid remains fixed. The thin-layer
Navier-Stokes equations are solved for the inner grid, while the Euler equations are
solved for the outer grid. Communication between the two grids is accomplished by
interpolating the flow quantities at the zonal interface. Solutions are obtained for
flows at fixed angles of incidence, and for unsteady flows over pitching and oscillating
airfoils. The computed results are in good agreement with available experimental

data.
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I. INTRODUCTION

A. BACKGROUND

Investigation of steady and unsteady flowfields over airfoils is an active area
of numerical and experimental research. Unsteady pitch-up motion of airfoils alters
significantly the aerodynamic characteristics of lifting surfaces. Pitch-up motion of
an airfoil produces lift augmentation and delay of stall to higher angles of incidence
compared to airfoils held at a steady incidence. Understanding the mechanisms that
cause the dynamic lift development is a subject of interest in both theoretical and
applied research.

A comprehensive explanation of the dynamic lift phenomenon is given by Tyler
and Leishman [Ref. 1]. To briefly summarize, unsteady airfoil motion tends to
maintain high lift to higher angles—of-attack, because the unsteady flow causes a
time delay in the build-up of the lift force and the adverse pressure gradient. The
unsteady motion also gives the airfoil a virtual camber which decreases the leading
edge pressure and pressure gradients. Depending on the flow conditions, as the airfoil
begins to stall, a vortex forms at the leading edge which grows with time which is
eventually shed downstream in the wake. This vortex shedding phenomenon alters the
chordwise pressure distribution on the upper surface of the airfoil resulting in higher
maximum lift coefficients. Sometimes, however, only a recirculating flow is observed
at the airfoil trailing edge. As the pitch—up motion progresses the recirculating region
extends upstream towards the leading edge and eventually a vortex is formed at the

trailing edge.




Rotary wing and fixed wing aircraft designers can enhance the performance of
the aircraft by taking advantage of the dynamic lift concept. However , the resulting
undesirable pitching moment variations have deprived helicopters and airplanes of
the benefits of dynamic lift [Ref. 2]. Carr [Ref. 3] gives a comprehensive review of
the progress that has been made in the study of the dvnamic stall phenomenon.

Experimental work on steady transonic flow on airfoils was conducted by McDe-
vitt and Okuno [Ref. 4]. These data cover a wide range of flow conditions and can
be used for steady code validation. One of the pioneering experimental works on un-
steady airfoil flows was conducted by McCroskey et al [Ref. 5. In their experiments,
unsteady dynamic effects for two-dimensional airfoil flows were studied for the first
time in conjunction with flows over helicopter blades. They showed the effects of
unsteady lift and pitching moment on the retreating rotor blades. Their research
also showed that unsteady motion parameters such as reduced frequency, appeared
to be more important than airfoil shape in determining the dynamic stall airloads.
Benchmark experimental data of oscillating and pitching airfoils was also collected by
Landon [Ref. 6]. The experimental data of references [5] and [6] gives enough quali-
tative information for unsteady code validation. Recent experiments with oscillating
airfoils, performed by Chandrasekhara and Brydges [Ref. 7], have shown definitively
that at subsonic Mach numbers the unsteady flow in the vicinity of the leading edge
can reach supersonic speeds and generate shocks.

Along with all the experimental studies being conducted, a great effort is also
underway to compute unsteady viscous flows. Developments of numerical methods
for the Navier-Stokes equations [Refs. 8, 9, 10] during the past few years provide
new tools for the investigation and prediction of airfoil flows. In this investigation
the compressible thin layer Navier-Stokes equations are solved using a zonal grid

approach. The objective is to develop a computationally efficient method to study




two-dimensional unsteady flows. This will be accomplished by developing a solution
procedure for two grids, an inner viscous grid around the solid body, and an outer
grid which is coarser representing the outer flow field. The inner grid is free to rotate
to any angle of attack. and the outer grid remains stationary.

The idea of moving meshes and dynamic meshes is not new. The dynamic
and adaptive grid solution method refers to computational grids which are coupled
to the physical problem that is being solved.An adaptive solution procedure with
grid points that continually move during the solution process in order to resolve :.e
developing gradients has been shown [Ref. 11]. A dynamic type of mesh has been
applied by Rumsey and Anderson [Ref. 12] to simulate aileron buzz using the thin
layer Navier-Stokes equations.

The idea of overlapped or patched grid schemes was used by Rubbert and Lee
[Ref. 13] with the limitation that the grid lines at the boundaries were continu-
ous. Benek et al [Ref. 14] developed the “CHIMERA” approach for two-dimensional
embedded and overlapping grids. They demonstrated that the grid lines at the over-
lapped boundaries did not have to be continuous, and that the flow quantities could
be successfully interpolated. The “CHIMERA” approach was later extended to three
dimensions by Benek et al [Ref. 15] . Rai [Ref. 16] developed a technique for in-
dependent zonal grids where the flow variables were interpolated across the zonal
interface. Chesshire and Henshaw [Ref. 17] developed a methodology for solving the
steady compressible Navier-Stokes equations using multiple overlapped grids. Their
methodology was demonstrated by solving the governing equations on a composite
grid that was comprised of an airfoil grid, a leading-edge flap grid, a trailing-cdge
flap grid and a grid for the outer flowfield. Chyu and Davis [Ref. 18] investigated
unsteady transonic flow using a moving airfoil grid. They developed stationary com-

putational grids around the airfoil at its lowest and highest angles of attack, and then




interpolated a new grid as the airfoil oscillated to intermediate angles—of-attack. Reu
and Ying [Ref. 19] developed a composite grid approach to study the flow about
pitching airfoils in a wind tunnel. Their approach consisted of a structured inner grid
and an unstructured grid for the outer flowfield.

Unsteady problems have also been solved by oscillating the incoming flow, as
opposed to moving the grid. However, this method does not work if a solution is
sought for two or more objects, such as a wing tail combination or a canard wing in

relative motion to each other.

B. PURPOSE

In this work, unsteady compressible flows are investigated using a numerical
technique which is applied to zonal meshes. The governing equations are solved
on multiple computational grids, where one of the grids is free to move in unison
with the solid boundary and the other grid is fixed. The meshes overlap at the
zonal interface. The scheme that is developed is similar to the “CHIMERA” scheme
mentioned previously, but we impose the restriction of a circular shape on the zonal
interface.

The new approach developed in this study is more computationally efficient
compared to previous schemes used to study unsteady flows. The zonal grid approach
avoids the need to regenerate or interpolate entire grids at every angle of attack. The
zonal interface is in a known position; therefore the entire flowfield does not need to
be searched. In addition, since the outer grid remains stationary, the metric terms do
not need to be recomputed at each time step. Another advantage is that the zonal
interface is circular; therefore the flow variables are interpolated in the circumferential
direction only. The zonal grid approach also allows for the application of different

solution methods to the inner and outer grids. For example, viscous solution methods




near the solid body and an inviscid method on the outer mesh can be implemented.
The primary objective of this investigation is to develop and test the zonal grid
methodology. The space discretization is based on Osher’s [Ref. 2(] upwind method.
An implicit scheme is used for time integration. An advantage of upwind schemes is
that they are naturally dissipative and no explicit artificial dissipation is required.
In order to meet our goal, a procedure for generating zonal grids was devel-
oped, along with the zonal flow solver. The effect of grid resolution on the accuracy
of solutions was studied first for steady flows and the solutions were compared to
experimental data collected by Harris [Ref. 21]. The unsteady results were validated
using the experiments by Landon. The dependence of the solution on the location of
the overlapped zonal region was examined. Viscous steady state solutions were com-
puted and compared to experimental data. Finally, unsteady flows were investigated
by computing solutions for airfoils in ramp and oscillatory motion. The ramp motion
was started at zero angle of incidence, and ramped up to 30 degrees. The comnputed
pressure coefficients were verified by comparing with available experimental pressure
distributions. The boundary layers computed for this case were also compared to an
interactive boundary layer code [Ref. 22]. The oscillatory test case was verified by
comparing the computed pressure coefficients with experimental data. This approach

and the computed results are described in the following chapters.




II. GOVERNING EQUATIONS

In order to compute compressible viscous fluid flow around a body, the conti-
nuity, momentum and energy equations must be solved simultaneously. The vector
and the conservation-law form of the compressible Reynolds-averaged Navier-Stokes

equation is presented. A detailed derivation can be found in [Ref. 23]

A. CONTINUITY EQUATION

The continuity equation expresses the conservation of mass law applied to a

fluid passing through a control volume fixed in space

dp _ .
5 T(VpV)=0 (2.1)

here p is the fluid density and V is the fluid velocity. Equation 2.1 states that the
net mass flux through a control volume bounding surface must be equal to the time
rate of change of the mass inside the control volume. In a two—-dimensional Cartesian

coordinate system this equation reads

dp 0 0 _
FTh g(/’u) + E(Pw) =0 (

(8]
(SN
~—

where u and w are velocity componerts along the r and z directions, respectively.

B. MOMENTUM EQUATION

The momentum equation expresses Newton’s second law as applied to a fluid
element passing through a control volume fixed in space. The momentum equation
1s:

0
a(pV)-{-V-pVV::pf—}-V-Hij (2.3)




The first term in equation 2.3 represents the time rate of change of momentum
per unit volume in the control volume. The second term represents the moment flux
through the bounding surface of the control volume. f is the body force per unit

volume and II;; is the stress tensor given by

aui 2 aUk
IIij = —pbi; + [87 - 55.‘:'8—“]
J

where 4,7,k = 1,2,3 and §;; is the Kronecker delta.
By substituting equation 2.4 into equation 2.3 and expanding equation 2.3 for

a two-dimensional Cartesian coordinate system obtain

P2 =pfe -2+ 2 [2u(22 -3+ 2 [0 (32 +2)

p2e=pf -2+ 2 [2u(222 -8+ & [n (32 + %)

liquations 2.5 are known as the Navier-Stokes equations for two—dimensional flow.

C. ENERGY EQUATION

The energy equation is derived by applying the first law of thermodynamics (rate

of change of energy = net heat fluz into particle + rate of work done on particle. )

- T a, (fzu+fzw) + %(eu+pu_UTxr_waz+Qz)

d
+ a—(ew + pw — wT,; — UTL, + Qz) =0
Z

where e is the total energy per unit volume and @ is the heat addition per unit
volume.

The above equations can be rewritten in non-dimensionalized vector form as

(2.6)

0Q OF 0G_ 1 (9Fs 3G,
ot Oz + 0z  Re\ Oz 0z
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where Uco is the free stream speed and L is a reference length The pressure is related

to u,w,p, and e by
1
p=(y-1)e—zp(u’ +w?)]

In the above equations, the ratio of the specific heats, 7, is set equal to 1.4 and
a® = 4p/p is the local speed of sound.

The density is non-dimensionalized by the free stream density, po, the velocities
arc non dimensionalized by the free stream speed of sound, and the total energy is

non dimensionalized by poa?..




D. TURBULENCE MODEL

The Navier-Stokes equations can completely model fluid flow, however, in or-
der to resolve turbulent scales at high Reynolds numbers and realistic geometries.
very high grid densities are required. Therefore, present state-of-the-art algorithms
and computer technology allows direct simulation of turbulent flows for only simple
geometries and low Revnolds number flows which are of limited practical interest.
In order to enable computation of turbulent flows for configurations, of practical in-
terest, turbulence modeling is used. Turbulence models are implemented with the
time-averaged forms of the Navier—Stokes equations.

Two widely used averaging procedures are the standard time averaging proce-
dure for incompressible flow, and the mass-averaged approach for compressible flows
[Ref. 24]|. The time averaging procedure destroys high frequency information of the
turbulence, but the unsteady mean flow information is preserved.

For the incompressible case, the randomly changing flow variables are replaced
with their averages plus their fluctuations. For example, in the Cartesian coordinate
system, the u velocity component is represented as u = @ + u’, where @ is the mean
velocity and u’ is the fluctuation about the mean. The governing equations are time
averaged, and the average of the fluctuation terms is set equal to zero.

In the compressible flow case, the mass—weighted variable of the Favre averaging

approach is used. In this case, u is represented as u = % + u” where @ is

=g
i
ATl |§'

Here the time average of the doubly primed fluctuating quantities is not equal to zero.
After the substitution is carried out for all of the fluctuating flow variables, the entire

equation is time averaged. Next, all the time averaged terms that are doubly primed




and multiplied by density are defined to be zero. For example

The equations of mean motion resulting from the time averaging procedure have
more unknowns than equations. This constitutes the closure problem of turbulence.
In order to close these equations a turbulence model is used. Several models have
been proposed, in this study.

The Baldwin-Lomax (B — L) turbulence model [Ref. 25] was used. This model
is a two-layer eddy viscosity model which simulates the effect of turbulence in terms
of the eddy viscosity coefficient ;. The term p in the stress terms is replaced by
i+ pe, and the p/P; in the heat flux terms is replaced with /P + pe/ Pre. The B—L
turbulence model is similar to the Cebeci-Smith turbulence model [Ref. 26], but it
bypasses the need for finding the edge of the boundary layer by using vorticity instead
of the boundary layer thickness. This model is adequate for flows which have mild
pressure gradients, but it is not very suitable for highly separated flows. A complete
description of the model is given in reference {25]. The basic equations of the model
follow.

In the inner layer, the eddy viscosity is assumed to be proportional to the mixing
length and vorticity, and in the outer layer it uses an exponentially decaying formula.
The inner eddy viscosity is computed up to the point where it is equal to the outer

eddy viscosity as shown below.

o
-1
~——

e = (ﬂt)inner y S Ycrossover (
f (ﬂt)outer ycrossover < y

where y is the normal distance from the wall and ycrossover taken at its minimum value

where it equals y. The inner eddy viscosity is given by:

(ﬂt)inner = P12|w|

10




where

yt
[ =ky [1 - exp(——%)}

- dx Oz

+ _ PuwlrlY
Hw

Y
AT is an experimentally determined damping constant, & is the Von Karman constant

The outer eddy viscosity is given by
ftoucer = KCeppF'(y)wake F(y)kLEB-

F(y)xies is the Klebanoff intermittency factor given by

C v\ °
F(y)xies = {1 +5.5 (_IEL_EB_J) }

y max

-1

x and C, are constants. For boundary layers
F(y)wake = ymameax~

For wakes and separated boundary layers

2
UDIF

F(y)wake = kaymaxF_-

The quantity ymay is the value of y determined for the maximum value of [, and

Finax 1s determined by

+
Fly) = ylw| [1 —eXP'%?]-

E. TRANSFORMATION TO GENERALIZED COORDINATES

In order to use an unweighted differencing scheme that facilitate the numerical
implementation on body fitted coordinate systems suitable for complex configura-

tions, the equations are transformed to a generalized coordinate system using the

11




following transformations

§=¢(z.2); (=((z,2) (2.

(8]
o8]
~

The above equations transform the governing equations from the physical domain to
a body fitted coordinate system. The transformation is carried out by using the chain

rule of partial differentiation

8 8 i) 8

= 05 > 3¢ Cor
For example, the continuity equation would be transformed in the following manner.
apu 0pu Jpv  Opv Jdpu dpv N
T T ) =Gz z 2.1
=& Yoo T e o (2:10)

€z, €; ,(z and (, are known as the metrics. The metric terms can determined in the

following manner. First write the differential expressions for £ and ¢
dé = &dz + €.dzy d¢ = (odx + (,dz (2.11)
In matrix form the expressions become

[dclz[@ Cz”dz] (2.12)

Next we write the differential expression for z and z

dz = z¢df + zcd(
dz = zed€ + z,d(

In matrix form they become

’

By comparing equations 2.12 and 2.14 we can write

[Ic $C}—l=[£x fz]
2 2 C,; CZ
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and solving for the metrics we get

ér = J:’(
" 2.16)
(r = —-]25 (
CZ = JZ{
where
1
J = (2.17)
Te I¢
25 <¢

The mapping from (z, z) to (¢, () is one to one if the Jacobian, J, is non singular.

F. THIN LAYER NAVIER STOKES EQUATIONS

In order to accurately calculate the normal gradients in the boundary layer, it
is necessary to make the normal grid spacing very fine close to the solid surfaces. n
the streamwise direction the flow gradients are not large and no fine grid spacing is
required. As a result the grid cells near the body have a very high aspect ratio. With
this type of grid, existing gradients in the streamwise direction are not fully resolved.
In order to facilitate the numerical implementation of the thin layer approximation
is employed by retaining only the viscous derivatives normal to the body. The thin
layer Navier-Stokes equations transformed into a generalized curvilinear system is

vector form are

0Q  oF  8G 1 [as]

5t "9 T " Re|dC
where
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pW
G = 1 pulW + (op
S J | puW H(p
(e+p)W —Gp

The viscous flux term is transformed as

0
g L| wmuuc+ (p/3)mal
J | pmawe + (p/3)ma(,
pmams + (p/3)mamy

where
my =2+ ¢

me = (u¢ + (we
(2.18)

my = (zu + (w.

U and W are the contravariant velocity components. These velocity components

are normal and parallel to the constant £ and ( surfaces, respectively.
U=§t+€xu+£zw

W =G+ Gou + Gw
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III. SOLUTION METHODS

A. ZONAL GRID GENERATION

The zonal grids were generated using a software package called GRAPE2D. de-
veloped at NASA Ames Research Center by Reese L. Sorenson [Ref. 27]. GRAPE2D
generates field grids by solving the following set of elliptic Poisson equations:

oo 31

GRAPE2D was used to generate the inner and outer grid separately. In gener-
ating the inner grid, the number of circumferential and radial grid points, the spacing
at the body surface, and the radius and shape of the outer boundary were specified.
Once the inner grid was generated, the outer boundary of the inner grid was used as
the inner boundary for the outer grid.

Due to the placement of the reference axis at the quarter chord of the airfoil.
the grid spacing in front of the airfoil is larger than aft of the airfoil. This causes a
problem in specifying an initial grid spacing for the outer grid. In order to obtain
the smoothest overall transition from the iﬁner grid to the outer grid, the starting
spacing for the outer grid was obtained by averaging the minimum and maximum
spacing at the outer boundary of the inner grid. The outer boundary of the outer
grid was prescribed as a rectangular region, usually about six chord lengths away
from the body.

The perfectly circular zonal boundary was accomplished by reading the over-
lapped regions z and z coordinates and finding an average radius which was measured
from the center of the grid, regardless of the location of the inner body. Next, an

arbitrary grid point was chosen to use as a reference point. Then an angle theta,
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6, was calculated which represented the angle between the reference grid point and
the grid point under consideration. Then having the average radius and the angle 0
for the grid points in the overlapped region, a new set of z and y coordinates was

calculated using the following equations:
r=rcosfd,y=rsind (3.2)

The overlapping of the two grids was performed by adding the next to last layer
of grid points from the inner grid to the outer grid, and adding the second layer of
grid points from the outer grid to the outer boundary of the inner grid. This resulted
in an overlapped region of three grid points or two grid cells in the radial direction.

The grid was also overlapped by a grid point in the circumferential direction.

B. NUMERICAL SCHEME
The numerical integration is performed using an upwind-biased, factorized,
iterative, implicit numerical scheme [Ref. 20] given by
1+ he(VEAY + Agfifk)Jp
[I+h((VZB;‘k+AfB — Re- 15< Mik))" > (@7 - Qn) = (3.3)

Q% — QR + he(FY, 2k F—1/2,k2
+h<(Gf.k+1/2 - Gz,k—1/2) Re™ hC(S Wk+1/2 Szk—l/z)]

In equation 3.3, hy = Ar/Af, ctc., AT = (0F/dQ), etc., are the flux Jacobian
matrices, and A, V, and 6 are the forward, backward and central difference operators,
respectively. The quantities F~','+1/2‘k, Gi,k+1/2, and 5',-,;:4,1/2 are numerical fluxes. The
inviscid fluxes F and G are evaluated using Osher’s upwinding scheme [Ref. 19]. The

numerical fluxes for a third-order accurate scheme are given by

Fx+1/2k— Fiippx+ 3 [A —1/2k+ 20F Y, k]

[AF+3/2 k + ~AF1—+1/2 k] = F(Qz ks Q:+1 k) (3.1)
% (AFY(Qiv1k, Qi) + 2AF Qi ks Qit1.6)] —
[AF ( z ks QI‘H,’C) + 2AF (QH—I,k’ Ql,k ] -
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Where F is the first-order numerical flux for the explicit Osher’s scheme given by

2

. 1 Qi1
Fvpw =35 [E.k + Fiv1k */Q {F: - Fq—}dQ]

where I, = Ff + Fq‘,Ff = (%)i, and AF¥ are the corrections to obtain a
higher order accuracy. The Osher scheme evaluates the flux assuming a shock tube
solution where F, is piecewise continuous and yields good predictions of the flux.
especially at supersonic Mach numbers. For the linearization of the left-hand side of
Eq. 3.3, the flux Jacobian matrices A, B are evaluated by the Steger—Warming [Ref.
28] flux-vector splitting.

Time accuracy of the implicit numerical solution is obtained by performing
Newton iteration to convergence for each time step. The approximation of Qrt!
at each subiteration is the quantity QP. When p > 2, during a given subiteration,
QP = Q"*', but when p = 1 and no subiteration is performed, then Q° = Q", and
Q”“ = Q"“. By subiterating to convergence, linearization and factorization errors
are minimized, because the left-hand side of Eq. 3.3. can be driven to zero at each
time step.

The linearization errors are eliminated by subiteration to convergence. Typ-
ically, two to three subiterations are sufficient to drop the residuals two orders of
magnitude during the Newton iteration process.

High order accurate shock-capturing schemes have some limitations; they may
select a nonphysical solution, they produce spurious oscillations and they may de-
velop a nonlinear instability in nonsmooth and discontinuous flow regions. More ap-
propriate high~order shock-capturing schemes, suitable for the computation of weak
solutions are the TVD schemes, described in detail in [Ref. 29, 30]. In the present
study, the Osher-Chakravarthy [Ref. 31] TVD scheme is used. This TVD scheme has

flux limiters which impose constraints on the gradients of the fluxes. The flux-limited
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values A f* are computed from the unlimited fluxes A f* as follows

]

Afi—+:«x/2.lc = minmod _Afi:-3/2,kv5Afi:-1/2,k‘
Afi+1/2,k = minmod _A i;1/2,k’6Afi:-3/2,k‘

o et (3.5)
Afiy1/246 = minmod | A i':l/2,k,/.9Afl-t1/2’k‘
+ . [ h
Afi_1j2x = minmod Afitl/g'ka,BA :"_1/2,,:‘
where the minmod operator is defined by
minmod(z, y] = sign(z) x maz[0, min{|z|,ysign(z)}] (3.6)

The viscous fluxes S 4172 are computed with central differences as follows

Sik+1/2 = S[Qik+1/2, (Qc)ik+1/2, Gikt1/2) (3.7)
1

Qik+172 = §(Qi,k + Qik-1) (3.8)

(Qc)iks+172 = Qins1 — Qi (3.9)

The experimental Reynolds numbers based on the chord length for the test cases
examined are in the range Re. & 3.0 x 10° — 5.0 x 10%, and it is expected that the flow
is mostly turbulent. Transitional flow is expected to have a small effect at regions very
close to the leading edge. Present knowledge about boundary layer transition does
not enable computation and modeling of the transition regime. Therefore, only fully
turbulent solutions were computed. In the present work, the widely used two-layer
Baldwin-Lomax turbulence model was used. The effectiveness of other turbulence
models, such as the Johnson-King model [Ref. 32] and the RNG based algebraic
model [Ref. 33] for steady and unsteady flows, was investigated in references [34] and

[35].

C. BOUNDARY CONDITIONS

The solutions on the two grids are computed separately, with the inner and

outer solutions communicating through the zonal interface boundary. The inner grid
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surrounds the airfoil and includes the boundary layer region and the wake for viscous
solutions. Inviscid solutions are obtained by applying the flow tangency slip condition
where the normal contravariant velocity component, W, is set equal to zero on the
surface. For viscous solutions, the nonslip condition is applied for the velocities on the
airfoil surface. In both cases the density and pressure are obtained from the interior
grid points by simple extrapolation. For unsteady solutions, the surface velocity is

set equal to the airfoil speed obtained by the prescribed airfoil motion as follows

W= (68— 66, W= (66— G&)

Unsteady solutions for pitching and oscillating airfoils are obtained by rotating the
inner grid only. Therefore, only the metrics of the inner grid must be reevaluated for
each time step.

At the inner zonal interface, the flow variables are obtained from the interior of
the outer grid solution. Similarly, the inner zonal boundary of the outer grid obtains
boundary information from the interior of the inner grid. The inner and outer grid
radial lines are not aligned, in general. The relative location of the two grids with
respect to the inertial reference frame as the inner grid rotates is computed. These
distances between neighboring points at the zonal interface are used for a weighted
averaging of the conservative variables.

All flows were computed for subsonic free-stream speeds. At the subsonic inflow
and outflow boundaries of the outer grid, the flow variables were reevaluated using
zero-order Riemann invariant extrapolation. At the inflow boundary, there are three
incoming and one outgoing characteristics. Therefore, three variables, the density p,
the normal velocity w, and the pressure p, are specified and the fourth variable, the
axial velocity u is extrapolated from the interior. The inflow boundary conditions are

given by
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a2 {(1/~-1)
o= ()
51 = (ﬁi‘)
a; = LS (RY - R7)
(3.10)

uy = (RY + R3)/2

w) = Wy
2

_ (P
= (‘T;‘L)

wheve RY, R; are the incoming and outgoing Riemann invariants given by
RY =ux +2ax/(v=1). R} =u; —2a3/(7 - 1)
At the outflow boundary there are one incoming and three outgoing characteristics.

I'icrefore only one quantity, the pressure, is specified. while the others are extrap-

olated from the interior. For the density and normal velocity, simple first-order
cxtrapolation is used, and the axial outflow velocity is obtained from the zero-order

ontgoing Riemann invariant. The outflow boundary conditions are given by

(3.11




were solved. For the unsteady flow solutions, the outer grid remained stationary and

the metrics were not reevaluated at each time step.
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IV. RESULTS AND DISCUSSION

The validity of the zonal grid approach was first investigated for inviscid solu-
tions. An advantage of the present approach is that different grid densities may be
used for the inner and outer grids. However, the accuracy and the conservative char-
acter of the solution for different locations of the zonal interface and grid densities
must be assessed.

First, the accuracy of the computed results for different inner and outer grid
densities was evaluated. The effect of the location of the zonal interface relative to the
airfoil on the accuracy of the solution was also investigated. Then viscous solutions at
fixed angles of incidence, up to approximately the static stall angle, were computed.
Finally, unsteady flow responses to a ramp motion at subsonic free-stream speed of

M, = 0.3 and for an oscillation at a free-stream speed of M., = 0.6 were computed.

A. STEADY STATE SOLUTIONS
1. Inviscid Test Cases

Preliminary test cases were computed using coarse meshes with an inviscid
solution. A two-block grid consisting of an 81 x 40 point O-type inner grid and an
81 x 22 point O-type outer grid was used as a baseline grid for the inviscid solutions.
Table 4.1 gives the inviscid grids that were tested.

a. Case 1. Baseline Grid: 81x40 Inner and 81x22 Outer

An inviscid solution using the baseline grid for subsonic flow over a

NACA-0012 airfoil at M, = 0.8, = —.1° was obtained. The baseline grid is given in
figure 4.2. The distribution of the computed surface pressure coefficient is compared

with the measurements of [Ref. 4] in Fig. 4.1. Agreement with the experimental data

[SV]
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TABLE 4.1: GRID DENSITIES OF THE INVISCID SOLUTIONS COMPUTED
FOR A NACA-0012 AIRFOIL AT M, =.8 AND a = -0.1.

Case | Inner Grid | Outer Grid | Inner Grid Radius
1 81 x 40 81 x 22 1.5 x chord
2 81 x 40 4] x 22 1.5 x chord
3 81 x 40 81 x 22 1.0 x chord
4 81 x 40 81 x 22 .75 x chord
5 81 x 18 81 x 19 OvalGrid
6 81 x 20 41 x 12 1.5 x chord

is satisfactory for an Euler solution. It can be seen that with this mesh the strength
of the shock is captured, but the location is lagged by 5 percent of the chord. The

baseline solution is converged at 2000 iterations.

a=-0.1t M=038
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05 F ' o Measured, McDevitt .
-1t ___Computed Solution .

Pressure Coefficient
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Figure 4.1: M,, = 0.8 Computed Solution With Baseline Grid Compared to Exper-
iment.




Figure 4.2: Inner Grid 81 x 40 Outer Grid is 81 x 22
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b. Case 2. Baseline Inner Grid With a 41x22 Outer Grid
Next the effect of the outer grid density is investigated. The grid for
(Case 2 was generated by starting with the baseline grid and removing every other grid
point from the outer grid. The resulting grid is given in Fig. 4.4. The Euler solution
is compared to experiment in Fig. 4.3. Overall the converged solution for this case
agrees with the baseline solution except it is noticed that the shock location for the

upper and lower surface are slightly farther apart than the baseline grid solution.

=-0.1 M=0.8

-Cp

05t o Measured, McDevitt .
1] ___Computed Solution s

Pressure Coefficient

_2 I L 1 L 1 1
0 0.2 0.4 0.6 0.8 1
Axial Location x/c

Figure 4.3: M, = 0.8 Computed pressure coefficient solution compared to experi-
mental data.
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Figure 4.4: Inner Grid 81 x 40 Quter Grid is 41 x 22
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c. Case 3. Overlap Boundary Set to 1 Chord Length Away From

Body
In this case the effect of the overlap boundary location is studied. The
grid generated is given in Fig. 4.6. It is seen that the transition from the inner to
the outer grid is not as smooth as for the cases where the boundary was located 50
percent farther from the airfoil. At the leading and trailing edges, the overlapped
boundary is only a half chord length away. In figure 4.5 the converged solution is
given. With this grid very little effect on the shock strength and location is seen. The
pressure coefficient before the shock is slightly underpredicted and after the shock is

slightly overpredicted.
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Figure 4.5: M, = 0.8 Computed Solution Compared to Experiment.
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Figure 4.6: Inner Grid 81 x 40 Outer Grid is 81 x 22
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d. Case 4. Overlap Boundary Set to .75 Chord Length Away

From Airfoil
In order to further investigate the tendencies observed in Case 3, an-
other grid is developed with the zonal interface closer to the airfoil. The overlapped
region is only a quarter chord away from the leading and trailing edges of the airfoil
as seen in Fig. 4.8. The solution obtained is compared to experiment in Fig. 4.7.
The pressure coefficient is again slightly underpredicted before the shock and slightly
overpredicted after the shock. It is also observed that the zonal interface location

relative to the airfoil has little effect on the solution.
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Figure 4.7: M, = 0.8 Computed Solution Compared to Experiment.
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e. Case 5. Grid With Oval Interface

The solution obtained for cases 3 and 4 showed that the location of
the zonal interface had very little effect on the computed solutions. The ability of
the zonal interface to pass flow discontinuities was also studied. It was known from
the previous cases that the shock location was near the the mid chord point. The
inner grid for this test case had to be generated so that the overlapped region was
very close to the upper and lower surface of the airfoil. This was accomplished by
generating an oval inner grid and an oval zonal interface. This grid is shown in figure
4.10. The computed surface pressure coefficient distribution is shown in figure 4.9. It
is in agreement with the experimental data and with the previous computed solutions.
The computed flow quantities, such as density and pressure, showed that the zonal
approach used can pass shocks through the zonal interface. Figure 4.11 shows Mach

contours which smoothly pass through the overlapped boundary.
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Figure 4.9: M,, = 0.8 Computed Solution Compared to Experiment.
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f. Case 6. Baseline Grid With Half the Radial Grid Points On

Outer Grid
In the previous cases, the effect of circumferential resolution was stud-
ied. Next, the effect of the radial resolution on the computed solutions is investigated.
Figure 4.13 shows the grid generated to test these effects. The computed surface
pressure coefficient distribution (in figure 4.12) was comparable with the solutions
obtained with denser outer grids. Computations with an even coarser grid, e.g., a
41 x 11 point grid, predicted the shock location even further downstream due to lack

of streamwise resolution.
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Figure 4.12: M, = 0.8 Computed Solution Compared to Experiment.
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2. Viscous Test Case

The Euler solutions presented in the previous section were used to study
the effects of different grid densities on the computed solutions. Having confidence
in the predictions of the code, the next step was to generate a viscous grid with the
airfoil’s quarter chord point at the center of the inner grid.

Viscous, subsonic flow solutions were obtained at the following fixed angles
of attack: 3.27°,4.97°,6.69°,8.38°,9.27°,10.12°,10.99° and 11.90°. The flow condi-
tions of the measurements reported in [Ref. 21] were used, e.g., M, = 0.3, Re =
4.0 x 10%. The spacing of the grid was set to 0.0005 for the first grid point above
the surface. The quarter chord point of the airfoil was set at the center of rotation
so the airfoil could be ramped about the quarter chord point. These solutions were
obtained on a 181 x 56 point viscous inner grid and a 181 x 26 point inviscid outer
grid shown in figure 4.14.

Solutions were also computed on a grid with half the streamwise resolution,
e.g., a 91 x56 point grid. The computed surface pressure coefficient distributions using
the 181 x 56 inner grid and 181 x 26 outer grid, are compared to experimental results
in figures 4.15 through 4.23.

Solutions for fixed angles of incidence were obtained by two methods. First
by rotating the inner grid to the specified angle of incidence and setting the oncoming
flow to zero degrees. Second by rotating the flow to the angle of incidence and
leaving the inner grid at zero angle relative to the outer grid. The computed pressure .
coefficients and boundary layers were the same for both cases.

For the low Mach number viscous solutions, no flux limiting was applied.
It is seen that the computed results closely agree with the experimental data. At the
higher angles of incidence the suction peak is not exactly captured. This is probably

due to lack of grid resolution at the leading edge of the airfoil.
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Figure 4.15: Viscous Computed Solution Compared to Experiment for o = 3.27°.
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Figure 4.16: Viscous Computed Solution Compared to Experiment for a = 4.97°.
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Figure 4.17: Viscous Computed Solution Compared to Experiment for a = 6.69°.
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Figure 4.18: Viscous Computed Solution Compared to Experiment for a = 7.54°.
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Figure 4.19: Viscous Computed Solution Compared to Experiment for a = 8.38°.
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Figure 4.20: Viscous Computed Solution Compared to Experiment for o = 9.2
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Figure 4.21: Viscous Computed Solution Compared to Experiment for a = 10.12°.
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Figure 4.22: Viscous Computed Solution Compared to Experiment for o = 10.99°.
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Figure 4.23: Viscous Computed Solution Compared to Experiment for o = 11.99°.
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B. RAMP MOTION SOLUTION

The unsteady solution for a ramp motion from a = 0° to o = 30° at M, =
0.3, Re = 2.7 x 10°% and reduced frequency , k& = 0.0127 was obtained on both a
91 x 56 point inner grid and a 181 x 56 point inner grid. The pitch rate for the ramp
motion k is defined as k = é&c¢/2U. The computed lift response is compared with

the experimental measurements of [Ref. 6] in Figure 4.24.
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Figure 4.24: Comparison of the Measured and Computed Lift for the Ramp Motion

Both the coarse and fine grid solutions closely predict the measured lift. How-
ever, at the higher angles of attack, the finer grid gives higher lift. The computed
surface pressure coefficient distributions at several angles of incidence are compared in
Figures 4.25 - 4.38. Experimental surface pressure coeflicients were available for the
following angles of incidence: 2.94°,5.84°,8.91°,11.76°,15.5°, and they are displayed
as diamonds in the figures. The computed surface pressure coeflicient distribution
is in good agreement with the measured data over the entire incidence range. The
computed flowfield at the maximum angle of incidence, a = 15.5°, is mostly attached.

A small separated flow region exists at the trailing ¢ .ge region only. At a higher angle
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of attack, a = 17.0°, the computed solution shows the development of the dynamic

stall vortex in the leading edge region.
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Figure 4.25: Computed ramp solution at o = 1.86°.
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Figure 4.26: Computed ramp solution compared to experimental data at a = 2.94°.
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Figure 4.27: Computed ramp solution at a = 4.14°.
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Figure 4.28: Computed ramp solution at o = 4.87°.
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Figure 4.29: Computed ramp solution compared to experimental data at a = 5.85°.
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Figure 4.30: Computed ramp solution at o = 6.72°.
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Figure 4.31: Computed ramp solution at o = 8.02°.
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Figure 4.32: Computed ramp solution compared to experimental data at a = 3.91".
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Figure 4.34: Computed ramp solution at a = 10.80°.
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Figure 4.35: Computed ramp solution compared to experimental data at
a=11.77°.
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Figure 4.36: Computed ramp solution at a = 12.84°.
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Figure 4.37: Computed ramp solution at o = 13.89°.
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Figure 4.38: Computed ramp solution compared to experimental data at

a = 15.55°.
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1. Boundary Layer Comparisons For Ramp Motion

Early on in the development of the software, the computed pressure coef-
ficients agreed quite well with the experimental data. As test cases at higher angles-
of-attack were tested, it was discovered that the flow was not separating from the
trailing edge of the airfoil. The problem was discovered by investigating the boundary
layer profiles. A problem in the turbulence model was discovered and easily fixed.
The lesson here is that although the computed and experimental pressure coefficients
agree quite well it is important to check that the boundary layer profiles are reason-
able. In figures 4.39 through 4.48 the computed boundary layers are compared to
boundary layers computed by the interactive viscous inviscid boundary layer method
of reference [22].

The comparisons are made at /¢ = .5 and at z/c = .9 for angles-of-
attack ranging from 2.94° to 15.5°. The computed boundary layer profiles compare
quite well up to 15.5°. At z/c = .9 for the angle-of-attack of 15.5°, the comparisons
diverge. This happens because of the different turbulence models used. At this angle-
of attack, the flow is separating at the trailing edge so the turbulence models used

become very important.
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Figure 4.39: Comparison of computed boundary layer with an interactive boundary
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Figure 4.40: Comparison of computed boundary layer with an interactive boundary
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Figure 4.41: Comparison of computed boundary layer with an interactive boundary
layer program at the 50% chord for o = 5.85 degrees.
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Figure 4.42: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for @ = 5.85 degrees.
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Figure 4.43: Comparison of computed boundary layer with an interactive boundary
layer program at the 50% chord for a = 8.91 degrees.
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Figure 4.44: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 8.91 degrees.
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Figure 4.45: Comparison of computed boundary layer with an interactive boundary
layer program at the 50% chord for a = 11.77 degrees.
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Figure 4.46: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 11.77 degrees.
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Figure 4.47: Comparison of computed boundary layer with an interactive boundary
layer program at the 50% chord for a = 15.55 degrees.
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Figure 4.48: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 15.55 degrees.
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2. Computed Ramp Flow Details

In this section. flow features of the computed ramp motion are ~howi,
I'hiese features are demonstrated by the density contour lines. Mach contour lines,
~orticity contour lines and mass-flux contours. The contour lines represent areax of
thie Hlowfield. for which the parameter of interest, remains constant. Clustered contour
lines represent areas where the parameter is rapidly changing.

In figures. 4.49 through 4.64. density. Mach number. vorticity and ma~~
ux contours are displayed for a = 1.867 to o = 17.30%. I[n figures 4.65 through 1.110
1 Mach number contours are replaced by pressure contours. This was done hecanse
thie ~trong gradients. caused by the vortices. tend to not give clear Mach number
nilormation.

In figure 1.63, a = 16.50°. the beginning of a vortex is visible near the
leading edge. At a = 17.00°. in figure 4.64 the vortex has moved 37 of chond
downstream. and another vortex is starting at the leading edge. \t o = [9.00
rthe lirst two vortices merge into one stronger vortex located near the 3090 chord
noint. [wo smaller vortices are also clearly visible in the mass-flux contours of hunre
1.6, The original vortex now detaches from the surface of the airfoil at 19.50". \i
o = 20.50°. a second vortex is shed from the leading edge area, and a the vortex showun
a1 19.5” has moved to the trailing edge. At a = 22.50". the trailing edge vortex ha-
Leen shed downstream. The whole process seems to repeat itself at a faster vate. -
can be seen in the remaining figures as the airfoil ramps up to 30°. The dyunamic <ol
enomenon is observed in terms of density. pressure and vorticity. The nose down
pitching moment is caused by the vortex sitting at the trailing edge. It is importam
the the vortices do not dissipate and do not get distorted as they pass throneh the

sonal interface.
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Next the solution was continued to angles bevond stall. Traces of alternar«
vurtex shedding from the trailing edge can be seen at a = 277. At high angles ol
tncidence the alternating vortex shedding is very well demonstrated in tigures 1.9
throngh 4.110. These computed solutions are in general agreement vith the findines
ol the experimental investigations of Chandrasekahara et al. Also it can be seen tha
e zonal method developed is capable of computing unsteady flows at very lLieh

ancles—of-attack showing at least qualitative agreement with the experiment.
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Figure 4.49: Ramp Motion Flow Details. M, = .3, k = .0127, Re = 2.7 x 10°.
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Figure 4.50: Ramp Motion Flow Details, M, = .3, k = .0127, Re = 2.7 x 10°.
a = 2.94°.
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Figure 4.51: Ramp Motion Flow Details, M, = .3, k = .0127, Re = 2.7 x 10°.
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Figure 4.86: Ramp Motion Flow Details, M,, = .3, k = .0127, Re = 2.7 x 10°.
a = 28.00°.

96




yr'ry = XVN
€0°6Z— = NIN

A
A,/

= Sz = ©

/

2.7 x 10°.

0127, Re = 2.

XN14—-SSVA ALIDILYOA

20’ = XVN
960 = NIN

SP'L = XVN
€9°0 = NN

JINSS3yd ALISN3Q

igure 4.87: Ramp Motion Flow Details. M, = .3, k






Figure 4.89: Ramp Motion Flow Details, My = .3, k = .0127, Re = 2.7 x 10°.
n = 29.50°.
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4.93: Ramp Motion Flow Details. M, = .3, k
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Figure
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Figure 4.95: Ramp Motion Flow Details. M, = .3, k = .0127, Re = 2.7 x 10°.
o = 35.00°.
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Ramp Motion Flow Details,
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Figure 4.99: Ramp Motion Flow Details. M, = .3, k = .0127, Re = 2.7 x 10
[ ;()OUU
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Figure 4.101: Ramp Motion Flow Details, M = .3, k = .0127, Re = 2.7 x 10°.
a = 41.00°.
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“igure 4.107: Ramp Motion Flow Details. M = .3, & = 0127, Re = 2.7 < 10"
= I:TOOU













(. OSCILLATORY MOTION SOLUTION

The unsteady solution for a periodic oscillatory motion. given by a(t) = 4.36 ~
Lo semet)oat Mo = 0.6, Re. = 4.8 < 0", with a reduced frequency of & = 0.11,
“o~ also obrained. Here the reduced frequency is defined as & = e/l . The flow fo:
s cnotion is initially purely subsonic: but. as the angle of attack increases to abou:
! = 57, supersonic flow conditions are encountered at the leading edge region and ..
ou~onic shock forms. This shock is present during the upstroke until the maximun:
snele of attack is reached and during the downstroke up to about a(t) =~ 5.0°. The
cvripted and measured lift and pitching moment response are compared in Figs

c D and 4112, respectively.

a(t)=4.86+2.44sin(wt), M=.6, k=.16, Re=4800000
1

T L]

° M;asured: Landor;
____Computed 181x56 Grid

0.9
0.8
0.7
06
05 F
04 |
03} .
0.2 L 4 .

2 3 4 5 6 7 8
Angle of Attack, deg

T

Lift Coefficient

-

I'igure 4.111: Comparison of Measured and Computed Lift for Os ‘llatory Tes!

Votion

The computed lift and pitching moment coefficients are in close agreement wit!:
‘v easured values. The computed surfice pressure distribution is compared witt.
“he measurements of reference [6] for two angles during the upstroke and two angle-
<ving the downstroke in Figs. 4.113 through 4.116 The computed surface pressure i-

it hetter agreement with the measurements at the lower angles of incidence (a = 5.95
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i and a = 3.11° down). At higher incidences (Fig. 4.114 and 4.115). the agreemen:
. “criorates in the region around the shock. The global view of the computed densit:
tend shows that the density contours smootlily cross the zonal interface for the casc

ere o shock exists.

a(t)=4.86+2.44sin(wt). M=0.60, k=0.16, Re=4800000
0.05 ,

o Measured, Landon .
. 004 [-__Computed 181x56 Grid .
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IFigure 4.112: Comparison of Measured and Computed Moment Coefficient fo:
O-~cillatory Test Case




a=5.95 deg. up, M=0.60, k=0.16, Re=4800000

o ¢ Measured, Landon
Qo ot Computed 181x56 Grid
<
[eF]
s 1 1
g
(&)
o OF 7
5
@
@ -1} J
a

-2 1 1 el 1 i L

-0.2 0 02 04 06 08 1 1.2
Axial Location x/c

Figure 4.113: Comparison of the Measured and Computed Unsteady Surface Pres:
~nre Coetficient of Oscillatory Motion. a = 5.93° upstroke.

a=6.97 deg. up, M=0.60, k=0.16, Re=4800000
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I'igure 4.114: Comparison of the Measured and Computed Unsteady Surface Pres
~ire Coefficient of Oscillatory Motion. a = 6.97° upstroke.




a=6.57 deg. down, M=0.60, k=0.16, Re=4800000
3

o Measured, Landon

c3' 2t ___ Computed 181x56 Grid
5
g 1} ]
b=
Q
S Lt
o O d i
e }
&
9 .1 - -
Q.

_2 A L ! J 1 1

-0.2 0 02 04 06 08 1 1.2

Axial Location x/c

Iligure 4.115: Comparison of the Measured and Computed Unsteady Surface Pres-
nre Coefficient of Oscillatory Motion. a = .37 downstroke.

3 a=5.11 deg. down, M=0.60, k=0.16, Re=4800000
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I'igure 4.116: ('omparison of the Measured and Computed Unsteady Surface Pros
~nre Coefficient ot Oscillatory Motion. o

= 3.95° downstroke.




V. CONCLUSIONS

A\ solution procedure suitable for steady and unsteady compressible How solu-
tions nsing zonal overlapped grids was developed. Simple weighted averaging wa-
g~ at the overlapped zonal interfaces. Steady and unsteady. inviscid and viscons
thow <ulutions for subsonic and transonic Hows over airfoils were presented to validat,
the vonal grid approach.

The inviscid solutions presented show the overlapped zonal interface’s ability to
s How properties without distortion. It was found that for the inviscid test cases
the focation of the zonal interface is not jmportant. In fact. as the zonal interfaco
mioved closer to the airfoil, while keeping the number of grid points constant. the
nressive coefficient prediction actually improved. This is due to more erid points
heine clustered close to the airfoil. This test case had strong shocks on the upper an.
wwwor surface of the airfoil, and as the grid points were moved closer to the airtoil.
"he computed solution tended to have bigger oscillations near the shock.

1he steady viscous test cases showed that using the Baldwin-Lomax turbidenc.:
imodel with the present approach gave accurate results for attached and nuldiv ~cp-
arated flow over stationary airfoils. This case demonstrates one of the advantayg: -
oI the present approach, specifically, that solving the inviscid equations on the vute:
v~ and the viscous equations on the inner grid gives good results. The How variables
were also passed smoothly through the zonal interface.

The ramp case again showed good agreement with experimental data. Wire
this case another advantage of the present approach was displaved. The inner erid
wa~ rotated with the airfoil to the new ansles of attack. The high order accuran

~chieme enabled the software to convect vortices, and at high angles. these vortices




convected up to 3 chord lengths.

The final test case was an oscillatory one. For this test case, supersonic flow was

encountered on the upstroke at the leading edge region which produced a transonic

shock. The computed lift and pitching moment coefficients are in close agreement

with the measured values. At the higher angles of attack the agreement with measured

data deteriorated in regions near the shock.

(8]

The following are some recommendations based on this study.

. It has been shown that the zonal grid approach can be used to study unsteady

viscous flows. A systematic comparison with other codes should be conducted

in order to quantify the efficiency of the present approach.

Presently, there exists no easy way to generate zonal grids. In this study the
grids were generated separately and then refined through several other pro-
grams. The development of a new or the modification of an existing software
package such as GRAPE is recommended. The user should be able to specifyv.
along with all the usual information, airfoil shape, the location of the overlapped

region, the number of overlapped cells and the size of the outer grid.

An advantage of the present approach is that it can be extended to multiple
inner and outer grids. A flow solver needs to developed to take advantage of

this so that effects of oscillating bodies in relative motion can be studied.
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